If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35^2+12^2=c^2
We move all terms to the left:
35^2+12^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+1369=0
a = -1; b = 0; c = +1369;
Δ = b2-4ac
Δ = 02-4·(-1)·1369
Δ = 5476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5476}=74$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-74}{2*-1}=\frac{-74}{-2} =+37 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+74}{2*-1}=\frac{74}{-2} =-37 $
| 4-x.5=-16 | | c*10=33.50 | | 4d+1=7d= | | 3x+5=11x+5 | | 16=12x-2x^2 | | 10y=3y+49 | | 4r-4=8r= | | 3(x+5)=11(x+5) | | 7x+-3=50 | | -2m=14=10 | | 5(e+6)=4(e+7 | | -3-5x=72 | | 4x+x^2=250 | | 6x-60=4x+48 | | x+163=200 | | 7+2a-6=9 | | 2/9=w+5 | | 16y-12=6 | | 2x/5+1=1/15 | | (X-12)=(4x-8) | | 17.2=g | | 40-l=14 | | 9x=5x+8= | | 34-(14x)=78 | | 13+x/7=6 | | T+6/5=t-2/10 | | 13/7=m/4 | | 6x+-3=12 | | 3(2x−4)=5x−16x−12=5x−111x−12=−111x=1x=11 | | 6x+-3=60 | | 3x2-7x-6=0 | | (X+5)+(x+5)=49 |